1 Potato ingestion is as effective as carbohydrate gels to support prolonged

2 cycling performance

Amadeo F. Salvador¹, Colleen F. McKenna², Rafael A. Alamilla¹, Ryan M. T. Cloud¹, Alexander 3 R. Keeble¹, Adriana Miltko¹, Susannah E. Scaroni², Joseph W. Beals², Alexander V. Ulanov³, 4 Ryan N. Dilger^{2,4,5}, Laura L. Bauer⁴, Elizabeth M. Broad⁶, and Nicholas A. Burd^{1,2} 5 6 ¹Department of Kinesiology and Community Health, ²Division of Nutritional Sciences, ³Roy J. 7 Carver Biotechnology Center, ⁴Department of Animal Sciences, ⁵Beckman Institute for 8 Advanced Science and Technology, University of Illinois, Urbana, IL, USA; ⁶US Olympic & 9 10 Paralympic Committee, Chula Vista, CA, USA. 11 12 Running head: Potato ingestion and exercise performance 13 Corresponding author: Nicholas A. Burd, PhD, Department of Kinesiology and Community 14 Health, University of Illinois at Urbana-Champaign, 352 Louise Freer Hall, 906 S. Goodwin 15 16 Avenue, Urbana, IL 61801, USA, Email : naburd@illinois.edu, Phone : +1 (217) 244-0970 17 18 Key words: carbohydrate, exercise, sports nutrition, endurance 19 20 21 22

23 ABSTRACT

24 Carbohydrate (CHO) ingestion is an established strategy to improve endurance performance. 25 Race fuels should not only sustain performance, but also be readily digested and absorbed. 26 Potatoes are a whole-food based option that fulfills these criteria yet their impact on performance 27 remains unexamined. We investigated the effects of potato purée ingestion during prolonged 28 cycling on subsequent performance versus commercial CHO gel or a water-only condition. 29 Twelve cyclists (70.7 \pm 7.7 kg, 173 \pm 8 cm, 31 \pm 9 years, 22 \pm 5.1 % body fat; mean \pm SD) with 30 average peak oxygen consumption (VO_{2PEAK}) of 60.7 ± 9.0 mL/kg/min performed a 2 h cycling 31 challenge (60-85%VO_{2PEAK}) followed by a time trial (TT, 6kJ/kg body mass) while consuming 32 potato, gel, or water in a randomized-crossover design. The race fuels were administered with U-33 $[^{13}C_6]$ glucose for an indirect estimate of gastric emptying rate. Blood samples were collected 34 throughout the trials. Blood glucose concentrations were higher (P < 0.001) in potato and gel 35 conditions when compared to water condition. Blood lactate concentrations were higher 36 (P=0.001) after the TT completion in both CHO conditions when compared to water condition. 37 TT performance was improved (P=0.032) in both potato (33.0 ± 4.5 min) and gel (33.0 ± 4.2 38 min) conditions when compared to the water condition $(39.5 \pm 7.9 \text{ min})$. Moreover, no difference 39 was observed in TT performance between CHO conditions (P=1.00). In conclusion, potato and 40 gel ingestion equally sustained blood glucose concentrations and TT performance. Our results 41 support the effective use of potatoes to support race performance for trained cyclists.

42

New & Noteworthy: The ingestion of concentrated carbohydrate gels during prolonged exercise
has been shown to promote carbohydrate availability and improve exercise performance. Our
study aim was to expand and diversify race fueling menus for athletes by providing an evidence

based whole food alternative to the routine ingestion of gels during training and competition. Our
work shows that russet potato ingestion during prolonged cycling is as effective as carbohydrate
gels to support exercise performance in trained athletes.

49

50 INTRODUCTION

51 Carbohydrate (CHO) ingestion during prolonged endurance exercise (>2 h) is a proven dietary 52 strategy to sustain exercise performance (31). The factors that contribute to the increased 53 exercise performance with CHO ingestion include maintenance of blood glucose concentrations, 54 high exogenous CHO oxidation rates during the late stages of a race, and attenuation in the 55 decline of liver glycogen during prolonged exercise (18). Indeed, the amount of ingested CHO 56 required to support exercise performance is closely connected to the intensity and duration of the 57 exercise bout, but recommendations generally range from 30-60 g/h with some 58 recommendations as high as 90 g/h depending on the type of CHO consumed and duration of 59 exercise (24).

60 Specifically formulated sports foods, such as concentrated CHO gels, are commonly used by 61 endurance athletes to enhance CHO availability during training and competition (19). The form 62 (e.g., liquid vs. solid) in which the CHO is ingested does not appear to modulate its delivery and 63 oxidation during exercise (32, 35). Hence, optimal race feeding is somewhat personalized and 64 race fuel selection will depend on a variety of factors including taste, cost, and the risk of 65 gastrointestinal (GI) distress. The latter is pertinent as the prevalence of exercise-induced GI 66 distress has been reported by 30-70% of endurance athletes (6, 12), and this GI distress may 67 negatively impact their performance (12). As such, the gut has been increasingly recognized as 68 an athletic organ (25); therefore, the most appropriate race fuel should facilitate gastric

emptying, intestinal absorption, and deliver targeted amounts of exogenous carbohydrates
without exacerbating GI symptoms (e.g., cramping, bloating, vomiting, etc) during competition
(23).

72 While commercially-available sports foods have been shown to effectively increase exercise 73 performance (7), it is relevant to identify other high performance foods to provide diet (CHO) 74 diversity for an athlete. Therefore, the purpose of the present study was to assess the 75 effectiveness of potato ingestion as a fueling strategy to support cycling time trial (TT) 76 performance when compared to CHO gel or water in trained cyclists. Potatoes are a promising 77 alternative for athletes because they represent a cost effective, nutrient dense, and whole food 78 source of CHO; furthermore, they serve as a savory race fuel option when compared to the high 79 sweetness of CHO gels. We examined other relevant variables that may be related to exercise 80 performance and nutrient bioavailability such as symptoms of GI discomfort, plasma intestinal 81 fatty acid binding protein concentrations (I-FABP; a marker of small intestine injury), and core 82 temperature (i.e., impact of exogenous CHO source on thermoregulatory capacity). Finally, [U- $^{13}C_6$]glucose was orally administered to provide (indirect) insight into the appearance rate of 83 84 ingested glucose into circulation. We hypothesized that potato and gels ingested at 60 g CHO/h 85 during a 2 h cycling challenge would be more effective on subsequent cycling TT performance 86 than only consuming water in trained cyclists.

87 METHODS

88 Participants and Ethical Approval

Twelve cyclists (n = 9 male, n = 3 female; 70.7 ± 7.7 kg, 173 ± 8 cm, 30.6 ± 8.7 years, $21.6 \pm 5.1\%$ body fat) volunteered to participate in this study. Participants cycled on average 267 km/week (range 120 to 480 km/week) and had been training an average of 7 years (range 3 to 20

92 years). Based on peak oxygen consumption (VO_{2PEAK}, 60.7 ± 9.0 mL/kg/min), peak workload 93 (W_{PEAK}, 350 \pm 63 W), and W_{PEAK}/kg (4.9 \pm 0.7 W/kg), the participants were classified as endurance trained and competitive (13). Experimental trials were completed during the mid-94 95 follicular phase of the menstrual cycle for the female participants. All participants were 96 considered healthy based on a self-reported medical screening questionnaire. Each participant 97 was informed of the purpose of the study, the experimental procedures, and all of the potential 98 risks prior to providing their written consent to participate. The study was approved by the 99 University of Illinois Institutional Review Board and conformed to standards for the use of 100 human participants in research as outlined in the Declaration of Helsinki. This trial is registered 101 at clinicaltrials.gov as NCT03294642.

102 Pre-testing

103 All participants underwent pre-testing procedures on two separate occasions. On the first visit, 104 body weight, height, and body composition by dual-energy X-ray absorptiometry (QDR 4500A; 105 Hologic, Marlborough, MA, USA) were measured. Subsequently, participants performed an 106 incremental cycling test on an electronically-braked cycle ergometer (Lode Excalibur Sport, 107 Groningen, Netherlands) with the initial power set at 2 W/kg body weight and increased by 30 W for males and 20 W for females every 1 min until exhaustion. VO_{2PEAK} was determined as the 108 109 highest recorded 20 s VO₂ value when \geq 3 criteria were satisfied: (1) a plateau in oxygen 110 consumption despite an increase in work rate; (2) respiratory exchange ratio ≥ 1.10 ; (3) Heart rate 111 peak within 10 bpm of age-predicted maximum (i.e., 220-age); or (4) ratings of perceived of exertion (RPE, Borg scale 6-20) \geq 17. The VO_{2PEAK} workload (VO_{2PPEAK}) and peak workload 112 113 (W_{PEAK}) were defined as the intensity related to the VO_{2PEAK} and the final intensity achieved at 114 the end of the test, respectively. Inclusion criteria was set at a minimum VO_{2PEAK} of 50

mL/kg/min for males and 45 mL/kg/min for females. During the screening phase, 4 participants were excluded for not meeting this threshold; however, the 12 participants enrolled achieved a VO_{2PEAK} above the minimum threshold. The participant's preferred cadence was also determined during incremental test, with first and last stages excluded from the calculation to avoid ergometer adaptation and fatigue effect, respectively. The seat position was recorded and replicated for all the subsequent tests.

121 On the second visit to the laboratory, participants performed a familiarization ride 122 consisting of a 120 min cycling challenge followed by a TT. The prescribed cycling challenge 123 intensities were predicted based on the incremental test and confirmed based on respiratory gases 124 collected during the first hour of the familiarization ride. During this trial, the participants used 125 their own preferred fueling strategy. Participants were excluded if they were not able to complete 126 the cycling challenge or the TT. During the screening phase, 2 participants were excluded 127 because they could not complete the familiarization trial. The 12 participants studied 128 successfully completed the familiarization trial. Afterwards, participants were randomized with 129 the trial order counterbalanced to consume either: (1) baked white potato flesh purée (60 g 130 CHO/h); (2) commercially-available energy gel (60 g CHO/h); or (3) water.

131 Dietary and Activity Control

Exercise and nutritional status were controlled prior to each experimental trial. Specifically, participants consumed standardized meals provided by the research team for 24 h prior to each experimental trial. The meal plans were designed by a registered dietitian to mimic recommended nutritional practices for endurance sport. Specifically, each meal had an energy content of 9 kcal/kg body mass and composed of 60% CHO [1.4 g/kg/meal (7 g/kg/day)], 20% protein (0.4 g/kg/meal), and 20% fat (0.2 g/kg/meal) with breakfast, lunch, dinner, and two 138 snacks being the meal times emphasized. Consumed meals were recorded and replicated for the 139 next trials. In addition, the participants were requested to abstain from drinking alcohol for 48 h and ingesting caffeine and/or NSAIDs (non-steroidal anti-inflammatory drugs) the morning of 140 141 their experimental trials. Participants were also provided with an ingestible thermistor capsule 142 (HQ Inc., Palmetto, FL) to be consumed 8-12 h prior to the experimental trials. Diet and training 143 diaries were used to assess compliance and returned to allow the participant to repeat identical 144 habits prior to each trial. In addition, the participants were requested to avoid any type of 145 exercise 48 h before the trials.

146 Experimental Protocol

147 Each participant arrived at the laboratory at the same time in the morning after an overnight fast. 148 On arrival, an intravenous (IV) catheter was inserted into an antecubital vein and kept patent 149 with 0.9% saline drip for repeated blood sampling. After baseline blood sampling, participants 150 were provided with a standardized breakfast (1 g/kg CHO, 0.4 g/kg protein) with water provided 151 ad libitum. Participants rested in the laboratory for 2 h prior to the commencement of the cycling 152 challenge. Prior to the cycling challenge, participants provided a urine sample to determine 153 baseline urine osmolality and urine specific gravity (USG; Osmometer Model 3320, Advanced 154 Instruments, Norwood, MA, USA) and were towel-dried prior to pre-exercise weight 155 measurements.

The exercise protocol consisted of a 120 min cycling challenge immediately followed by a TT (6 kJ/kg body mass) completed as fast as possible. As shown in **Figure 1**, the cycling challenge started with a 5 min warm-up at $50\%VO_{2PEAK}$ followed by steady-state exercise at $60\%VO_{2PEAK}$, with four intermittent, high intensity bursts (each 3 min at $85\%VO_{2PEAK}$) to simulate hill climbs. Each burst was immediately followed by a low intensity period (1 min at

161 35%VO_{2PEAK}) to simulate descents. "Hills" and "descents" were performed once every 30 162 minutes. On two of the trials, participants were administered supplemental CHO (15 g CHO 163 administered every 15 min) in the form of baked russet potato flesh purée (128.5 g per bolus) or 164 CHO gels (PowerBar; 23 g per bolus). All treatments were supplemented with 2% enriched (0.3 g) U- $[^{13}C_6]$ glucose to provide a proxy for gastric emptying rates and the subsequent appearance 165 166 of exogenous glucose into circulation (3). Blood sampling, heart rate, core temperature, RPE 167 (Borg scale 6-20) and GI symptoms were assessed throughout the cycling challenge according to 168 Figure 1. For the TT, the ergometer was set in linear mode with the linear factor based on their 169 personal 70% P_{PEAK} and preferred cycling cadence determined during the incremental test. In 170 this ergometer mode, an increase in cadence resulted in an equivalent increase in the required 171 workload. During the TT, encouragement was withheld until the last 10% of TT and no 172 information about performance was provided. After completion of the TT, participants were 173 towel-dried, weighed, and subsequently provided a urine sample. For the RPE analysis of the TT, 174 we adopted a ratio of RPE by workload, as previously described (16). This calculation accounts 175 for the Borg scale's ceiling effect (4). The GI symptoms (i.e., overall symptoms, abdominal pain, 176 abdominal bloating, gut rumbling, flatulence, abdominal discomfort) were rated against a 177 standardized 0–100 millimeters visual analogue scale (VAS) questionnaire. Blood samples were 178 collected in EDTA-containing tubes and centrifuged at $3000 \times g$, 4°C for 10 min. Aliquots of 179 plasma were frozen and stored at -80°C until subsequent analysis.

180

Race Fuel Preparation and Analysis

181 Russet potatoes were purchased fresh before each trial. Potatoes were microwaved, peeled, 182 blended in a food processor, and then both processed potatoes and gel were analyzed for total 183 nonstructural carbohydrate content (gross measure of the proportion of CHO that could be 184 digested by mammalian enzymes) (38) in order to determine appropriate serving size for goal 185 CHO dose. 548 g of potato flesh (~1.1 kg raw potatoes), baked in skin, yielded 120 g CHO for 186 the 2 h cycling challenge. The baked-in-skin potato flesh was blended with 478.5 mL H₂O and 187 2.4 g table salt (NaCl) to achieve a consistency and salinity similar to the CHO gels. 184 g (120 188 g CHO) of sport gels (PowerBar®, Power Gel®, vanilla; Premier Nutrition, Emeryville, CA) 189 were consumed during the respective cycling challenge. Both the potato purée and gels were 190 aliquoted into 8 servings (15 g CHO), and refrigerated (4°C) until trial-day time of ingestion. 191 CHO conditions were administered in 30 mL disposable syringes to standardize method of 192 delivery. The gels did not contain caffeine or any stimulants.

193 An additional aliquot of CHO conditions (potato and gel) from each trial was frozen at -194 20°C for future CHO compositional analysis. Samples were freeze-dried, ground, and a 195 subsample was heated to 105°C to determine dry matter content—all subsequent extractions 196 were calculated on a dry matter basis. Crude protein, ash, and total dietary fiber (along with an 197 insoluble/soluble split) were extracted by α -amylase and amyloglucosidase as previously 198 described (36). Free monosaccharides, oligosaccharides, and fructooligosaccharides were 199 isolated by high-performance liquid chromatography (HPLC) analysis (8, 37). No quantifiable 200 amount of fructo- and galacto- oligosaccharides were detected in either potato or gel samples. 201 Monosaccharides and sugar alcohols were extracted by sulfuric acid hydrolysis with added 2-202 deoxyglucose as an internal standard. Composition was determined by HPLC analysis and 203 quantified against known standards of various monosaccharides and sugar alcohols (21). The 204 nutrient composition and estimated energy yield (44) of the treatments is shown in Table 1.

Fluid intake was also controlled during all three trials. Experimental trial 1, irrespective of condition, served to identify each participants' 'usual' water intake by allowing water *ad* 207 *libitum*. This amount was recorded and replicated throughout all subsequent trials. Water used 208 for potato purée preparation was accounted for total water allowance. We used this approach as 209 fluid intake guidelines are varied and highly individualized in trained athletes due to differential 210 sweat rates. Hydration status was assessed from pre- to post-exercise based on changes in body 211 mass, urine osmolality, and USG.

212 Blood Analysis

213 Glucose and lactate were analyzed in whole blood using an automated biochemical analyzer 214 (YSI 2300 Stat Plus; YSI, Yellow Springs, OH, USA). Plasma insulin concentrations were 215 determined by a commercially-available enzyme-linked immunosorbent assay (ELISA) (ALPCO 216 Diagnostics, Salem, NH, USA) and expressed as area under the curve (AUC) during the cycling 217 challenge. Plasma I-FABP concentrations were assessed by an ELISA according to 218 manufacturer's instructions (Hycult Biotechnology, Uden, NL) and it was expressed as fold change from baseline. Plasma [U-¹³C₆]glucose enrichments were determined by gas 219 220 chromatography-mass spectrometry (GC-MS) analysis (7890A GC/5975C MSD; Agilent). 221 Briefly, plasma samples were deproteinized and converted into their tert-butyldimethylsilyl 222 derivatives and enrichments were determined using electron ionization by ion monitoring at m/z223 of 319 (m+0), 321 (m+2), and 323 (m+4). Plasma glucose enrichments for each labeled ion were 224 expressed relative to 319 (m+0, tracee) and enrichment was expressed as tracer-to-tracee-ratio 225 (TTR). All blood metabolites were analyzed blindly.

226 Expired Gas Analysis

Oxygen consumption (VO₂), carbon dioxide production (VCO₂), and ventilation per minute (VE)
were measured breath-by-breath using an automated open-circuit gas analysis system (TrueOne

2400 Parvo Medics, Inc., Salt Lake City, UT, USA) throughout each test. During the cycling
challenge, the last 15 min of expired gas was collected, and 30 second-averages between 111.5
and 116 min of the cycling challenge was used to calculate fat and CHO oxidation rates during
exercise in a blinded-fashion according to the equations below (17):

 $Fat \ oxidation = (1.695 \cdot VO2) - (1.701 \cdot VCO2)$

Carbohydrate oxidation = $(4.21 \cdot VCO2) - (2.962 \cdot VO2)$

with VO_2 and VCO_2 in liters per min (L/min) and oxidation rates in grams per min (g/min).

234 Statistics

235 Based on a priori power analysis, twelve participants exceeded the minimum sample size 236 required to detect difference in time trial performance with a power of 0.80. This power 237 calculation was based on a 2-tailed alpha level of 0.05 and past efforts that used a similar time 238 trial approach (42). The effect of nutritional strategy on outcomes was estimated via a linear 239 mixed model analyses of variance using the software SPSS version 20. For analysis of plasma U-¹³C₆]glucose enrichments, glucose, lactate, insulin, I-FABP, CHO and fat oxidation, RPE, GI 240 241 symptoms, workload, total work, and heart rate, the fixed factors were time and condition 242 (water, potatoes, or gel) and the random factor was subject. For analysis of TT performance, 243 weight loss, USG, and urine osmolality, condition was the only fixed factor. The TT was divided 244 in four quartiles for performance, RPE, and HR analyzes. Bonferroni's post hoc tests were 245 performed to determine differences between means for all significant main effects and 246 interactions. To evaluate the relationship between TT performance and I-FABP or glucose 247 concentrations at 120 min (onset of TT), the repeated-measures correlation analysis was 248 performed using the rmcorr R package developed by Bakdash and Marusich (https://cran.r249 project.org/web/packages/rmcorr/) (2). The level of statistical significance was set at P<0.05 for
250 all analysis. The data are expressed as mean and standard deviation (SD).

251 **RESULTS**

252 Challenge and Time Trial

253 The average difference between experimental trial start time for cycling challenge and TT was 254 11 ± 10 and 9 ± 9 min, respectively. Total weight loss did not differ (P=0.824) between water (-255 2.04 ± 0.89 kg), potato (-1.84 ± 0.74 kg), or gel conditions (-1.87 ± 0.59 kg). Similarly, USG was 256 not different (P=0.605) between the water (PRE: 1.008 ± 0.005 and POST: 1.010 ± 0.004), 257 potato (PRE: 1.011 ± 0.009 and POST: 1.009 ± 0.004) and gel conditions (PRE: 1.011 ± 0.007 258 and POST: 1.010 ± 0.004). Before the start of the cycling challenge, urine osmolality was $323 \pm$ 259 189, 380 ± 275 , 374 ± 260 mOsm/kg for water, potato and gel conditions, respectively. After 260 completion of the TT, urine osmolality was 351 ± 158 , 316 ± 150 , 341 ± 150 mOsm/kg for 261 water, potato and gel conditions, respectively. No time (P=0.875) or condition (P=0.740) effects 262 were observed in urine osmolality.

263 The average absolute challenge intensities were 150 ± 32 , 180 ± 30 , 278 ± 50 , 93 ± 21 W for 264 50%, 60%, 85%, and 35 %VO_{2PPEAK}, respectively. These intensities represent 43 ± 4 , 52 ± 2 , 80 265 \pm 5 and 27 \pm 3% W_{PEAK}, respectively. Average total work performed during the entire challenge 266 was 1332 ± 232 kJ, and specifically 45 ± 9 , 778 ± 133 , 200 ± 36 and 28 ± 6 kJ at the intensities 267 50%, 60%, 85%, 35%VO_{2PPEAK}, respectively. Heart rate responses during the cycling challenge 268 were not different between conditions (P=0.962). The heart rate average values at the first, 269 second, third, and fourth hills were 167 ± 8 , 166 ± 8 , 167 ± 9 and 169 ± 8 bpm for the water 270 condition, 167 ± 7 , 168 ± 8 , 167 ± 8 and 168 ± 8 bpm for the potato condition and, 167 ± 8 , 168

271 ± 8 , 168 ± 7 and 169 ± 8 bpm for the gel condition, respectively. During the TT, CHO ingestion, 272 irrespective of condition, resulted in a higher percentages of peak heart rate obtained when 273 compared with water condition (P<0.01). Peak heart rate was obtained during the incremental 274 test. The percentage values for each condition were: $86 \pm 11\%$, $86 \pm 11\%$ and $85 \pm 10\%$ (water); 275 $91 \pm 8\%$, $90 \pm 8\%$ and $92 \pm 8\%$ (potato); and $91 \pm 9\%$, $91 \pm 9\%$ and $93 \pm 7\%$ (gel) during the 276 second, third, and fourth quartile of the TT, respectively.

277 Whole Body Substrate Oxidation

A main effect of condition was observed in CHO and fat oxidation (P<0.001) with no effect of time (P=1.00). Gel (1.79 \pm 0.59 g/min; P<0.001) and potato (1.69 \pm 0.40 g/min; P<0.001) conditions showed higher CHO oxidation when compared to the water condition (1.42 \pm 0.54 g/min). Similarly, fat oxidation was higher in water (0.75 \pm 0.28 g/min) when compared to potato (0.65 \pm 0.25 g/min; P=0.017) and gel conditions (0.59 \pm 0.26 g/min; P<0.001). There was no difference between gel and potato conditions in CHO (P=0.556) and fat oxidation (P=0.437).

284 Rating of Perceived Exertion

RPE values at 60 min (water: 14.9 ± 2.1 , potato: 14.6 ± 1.9 , gel: 14.4 ± 2.5) and at the cessation of the cycling challenge (water: 17.5 ± 2.3 , potato: 16.5 ± 2.4 , gel: 17 ± 2) were different (P<0.001) from baseline (water: 7.5 ± 1.7 , potato: 7.0 ± 1.4 , gel: 7.7 ± 1.9). No differences (P=0.106) between conditions were observed in raw and fold-change controlled by the baseline value. However, significant differences were observed in RPE relative to load performed between potato (P=0.005) and gel (P=0.008) conditions versus water condition during the TT (Figure 2).

292 Core Temperature

There was no difference in core temperature (P=0.779) between conditions during the cycling challenge. The core temperature increased significantly from the beginning of the exercise in water (P=0.003), potato (P=0.037), and gel (P=0.015) condition at 24, 17, 19 min, respectively. In addition, even with no differences (P=0.685) in the baseline value between water (36.9 ± 0.3° C), potato (36.8 ± 0.3^{\circ}C), and gel condition (37.0 ± 0.4^{\circ}C), core temperature value at the onset of the TT was lower (P=0.045) in potato (37.8 ± 0.5^{\circ}C) when compared to gel (38.3 ± 0.5° C) condition, with no differences when compared to the water (37.9 ± 0.5^{\circ}C) condition.

300 Blood Analysis

301 No differences were observed in baseline measurements for blood glucose concentrations 302 (P=1.00). Blood glucose concentrations (P<0.001) were elevated in both CHO conditions when 303 compared to the water condition during the cycling challenge (Figure 3a). The plasma [U¹³C]glucose enrichments were not different between CHO conditions. However, a difference 304 305 (P<0.001) was observed between CHO conditions and the water condition after 45 min of the 306 cycling challenge until the end of the experimental trial (Figure 3b). No differences were 307 observed in blood lactate concentrations (Figure 3c) between conditions during the cycling 308 challenge; however, a higher lactate concentration (P=0.001) was found after TT completion in 309 both CHO conditions (potato: 4.0 ± 2.3 and gel: 4.7 ± 1.3 mmol/L) when compared to water 310 condition $(2.4 \pm 1.0 \text{ mmol/L})$. Plasma insulin concentrations were higher in the gel when 311 compared to the water condition (main effect of condition: P=0.003). There were no differences 312 in plasma insulin concentrations between the potato and water conditions (P=0.253). CHO 313 ingestion reduced (P=0.011) exercise-induced intestinal damage, as indicated by lower plasma I-

FABP concentrations (Figure 3e), in CHO conditions at 75 min of the cycling challenge, which
remained lower until the end of the TT.

316 Gastrointestinal Symptoms

GI symptoms are shown in **Figure 4**. The overall GI symptoms were higher for potatoes when compared to the other conditions after the cycling challenge (120 min). Specifically, there was higher level of abdominal pain, bloating, and discomfort during the late phases of the cycling challenge. No correlations between plasma I-FABP concentration and GI symptoms were observed.

322 Performances Measurements

323 TT performance (Figure 5a) was significantly faster (P=0.032) in potato ($33.0 \pm 4.5 \text{ min}$) and 324 gel $(33.0 \pm 4.2 \text{ min})$ conditions when compared to the water condition $(39.5 \pm 7.9 \text{ min})$. 325 However, no difference was observed between the potato and gel conditions (P=1.00). When 326 power output was analyzed in quartiles (Figure 5b), time to completion of each quartile of the 327 TT was statistically different (P=0.02) for CHO conditions when compared to water across all 328 quartiles, indicating no difference in pace or race strategy selected by the athlete. In addition, TT 329 performance was inversely correlated to blood glucose concentration (r=-0.72; P<0.001; 95% 330 confidence interval (CI) =-0.88 to -0.42), and positively correlated with plasma I-FABP 331 concentration (r= 0.65; P=0.001; 95% CI= 0.28 to 0.85) at 120 min, before the TT start.

332 DISCUSSION

333 CHO ingestion to sustain exercise performance has been extensively studied (11, 31). However, 334 most research has used manufactured CHO products, limiting evidence-based confirmation of 335 whole food sources as an effective race fuel alternative. To our knowledge, our investigation is the first to provide such a comparison of a whole food CHO source (i.e., russet potato) to a commercially-available sport food such as concentrated CHO gel in a performance specific setting. We demonstrated that potato ingestion during exercise exhibited similar performance improvements over water when compared to the ingestion of gels during prolonged cycling in trained athletes.

341 The end-state vision for coaches, dietitians, and athletes is to translate research outputs into 342 practical applications and ultimate implementation into training for more successful competition 343 (10). The cyclists tested in this study are classified as endurance trained (13). This categorization 344 is relevant for interpretation of results since a significant change in exercise performance is only 345 observed when the intervention effect is highly pronounced. In other words, the more trained the 346 athlete, the less susceptible they are to improvement in exercise performance outcomes than a 347 non-trained individual (22). Even with no difference in heart rate during the cycling challenge 348 between conditions in the present study, the self-paced timed trial altered the heart rate response. 349 Specifically, the potato and gel conditions resulted in an increased heart rate during the TT. This 350 was likely due to a higher exercise intensity selection and tolerance with CHO ingestion when 351 compared to water alone. Moreover, there were no differences observed between the potato and 352 gel conditions in heart rate, showing the ability of these treatments to reach a higher 353 cardiovascular stimulus when 60g of CHO/h is ingested versus the consumption of only water.

The RPE responses were consistent with previous studies (33), confirming the potential of exogenous carbohydrate in attenuating exertional perceptions during long endurance cycling (1, 33). RPE relative to watts was lower in both CHO conditions (**Figure 2**), which can not only be attributed to the effectiveness of exogenous CHO in generating more power, but may also be associated with the reward value of CHO intake (43). RPE is an important marker in models of

16

fatigue and is regularly used to dictate intensities in training sessions (16), and the similarity the RPE/W between CHO conditions highlights the feasibility of potatoes as an alternative training or race fuel.

362 Proper GI function (i.e., sufficient gastric emptying rates and intestinal absorption of 363 nutrients) is relevant to ensure the adequate delivery of fluid and carbohydrates during training 364 and competition. Here, we showed that plasma glucose concentrations were increased to a 365 similar extent between the potato and gel conditions versus the water condition throughout the exercise protocol (Figure 3a). Moreover, plasma [U-¹³C₆]glucose enrichments did not differ 366 367 between the potato and gel conditions, which suggests that gastric emptying rates were similar 368 between the CHO conditions (Figure 3c). Similarly, substrate utilization during the late phase of 369 the cycling challenge demonstrated that whole body CHO oxidation rates were higher as well as 370 fat oxidation rates were lower with the ingestion of exogenous CHO. Unfortunately, our 371 experimental approach does not allow us to interpret the influence of food source preference on 372 exogenous versus endogenous CHO oxidation rates. Moreover, it has been established that the 373 ingestion of multiple transportable CHO allows for higher amounts (90 g/h) of CHO to be 374 consumed, thereby allowing for higher CHO oxidation rates to be achieved during prolonged 375 exercise (23). Hence, our findings may only be relevant for ingested CHO doses of 60 g/h.

Plasma I-FABP concentrations are often used as a biomarker for gut damage in exercise studies (27, 39). I-FABP are cytosolic proteins present in enterocytes, which are rapidly released into the bloodstream upon intestinal cell damage. We have previously demonstrated an exerciseinduced increase in plasma I-FABP concentrations when compared to a rested-state (29). Importantly, previous studies have shown the potential of nutritional supplements to 'protect' the gut from exercise-induced damage during prolonged exercise (26, 45), albeit inconsistent (30). Potato ingestion reduced gut damage, as indicated by similar reductions in plasma I-FABP concentrations between gel and potato versus the water condition, throughout the exercise protocol (**Figure 3e**). As such, more research is needed to determine optimal feeding strategies that reduce GI distress and improve gut resilience while maximizing glucose availability. Nevertheless, the present study is the first to report a correlation between exercise performance and plasma I-FABP concentrations. This highlights the importance of protecting (45) and 'training your gut' (25) to reduce intestinal damage and sustain performance.

389 It is important to recognize that the increase in plasma I-FABP concentrations in our study 390 was not accompanied with an increase in GI symptoms. However, the lack of correlation 391 between GI symptoms and I-FABP is consistent with other studies (27, 39). GI symptom 392 responses vary based on exercise mode, intensity, duration, and nutritional strategy adopted, 393 which makes comparisons between studies challenging (34). Here, potato ingestion resulted in 394 higher GI symptoms when compared to the gel or water conditions (Figure 4). We speculate that 395 the higher volume of potato needed to reach the same quantity of CHO/dose of gel (i.e., 396 128g/145 mL potato purée versus 23g/24mL gel per dose) the retrogradation (i.e., formation of 397 resistant starch) process during cooling which increases the indigestible proportion, could 398 cumulatively cause higher GI symptoms in this condition. Nevertheless, average GI symptoms 399 (Figure 4) were lower than previous studies (34) indicating that both CHO conditions were well 400 tolerated by majority of the study's cyclists. It is worthwhile to mention that only two 401 participants had previously chosen potatoes as their personal race fuel, but all participants 402 regularly ingest CHO gels during races and training, and according to the gut training theory (6, 403 25) frequency of ingestion could also alter digestibility and perceptions of fullness. Thus, the

404 regular use of potato purée as a race feeding strategy may reduce GI symptoms over time;405 however, future work would be required to confirm this assertion.

406 Although the higher GI distress noted in the potato condition may be explained by the higher 407 overall volume of potatoes (~8 medium sized potatoes) and resistant starch formation, these 408 factors may have also influenced the significantly lower core temperature that was observed in 409 the potato condition versus the gel condition. The gel and potato treatments were administered at 410 the same temperature, and there were no differences in core temperature at baseline, yet potato 411 ingestion facilitated 0.5°C decrease in core temperature. Indeed, our trials were conducted in 412 ambient temperature, which differs from the majority of thermoregulation studies that use heat 413 and humid conditions (40), so we advise caution when interpreting core temperature 414 observations of chilled potato purée as a cooling strategy.

415 Ultimately, the identification of an optimal race feeding strategy for the competition day is 416 complex, with direct considerations like exercise mode, intensity, and duration playing a role in 417 an athlete's nutrition requirements (e.g., timing and dose). Furthermore, indirect considerations 418 like taste preference, cost, and overall convenience will also influence race fuel source. Indeed, 419 carrying and ingesting ~ 1 kg of potato purée would be somewhat burdensome on an athlete; 420 however, our approach allowed us to standardize CHO content and food consistency so that we 421 may appropriately evaluate our study outcomes. Overall, our work simply provides a proof-of-422 principle for a whole food source of CHO to serve as a viable sport food to be included in race 423 feeding strategies to provide an alternative to the routine ingestion of gels during training and 424 competition. Our outcomes can be utilized by coaches, sport dietitians, and race event 425 organizations to incorporate potatoes as an effective performance nutrition option, with recipes 426 being tailored to an athlete's preference throughout training and/or a race. This will help reduce

19

427 the risk of flavor fatigue (i.e., viable savory option) (28), offset financial burden, and increase 428 diet diversity. Importantly, the nutrient matrix of a potato-sourced race fuel also contains other 429 micronutrients that may be beneficial to improve diet quality of an athlete (5, 20).

430 It is worth noting that there are other investigations of peri-exercise food source on exercise 431 performance. Specifically, Thomas et al (41) observed that pre-exercise meals consisting of 432 glucose, water, and lentils potentiated exercise performance in comparison to potatoes. Results 433 comparison is limited however, as the respective study measured performance by time to 434 exhaustion—an impractical method with low reliability (15). Alternatively, our exercise protocol 435 seeks to improve race-day applicability, incorporating high intensity hills during the first two 436 hours of exercise followed by a long cycling TT, with the total exercise duration over 150 437 minutes. Consequently, such practicality limits the comparisons between other findings. 438 Nevertheless, the performance increase in CHO over control (i.e., water) in the present study is 439 higher when compared to use of other whole food sources (i.e., honey) (14), CHO mouth rinse 440 (9), and caffeine supplementation (7).

441 In conclusion, we demonstrated that the ingestion of potato purée represents a viable race 442 feeding strategy by maintaining blood glucose concentration, facilitating gastric emptying, and 443 supporting cycling performance similar to concentrated CHO gel products. Our results have 444 implications for the inclusion of a whole-food based option as a component of a race feeding strategy to support prolonged exercise performance. Future studies that investigate potato 445 446 processing (e.g., baked, pureed, freeze-dried, etc.) for GI acceptance (i.e., reduced GI symptoms 447 and intestinal permeability) would certainly optimize evidence-based performance nutrition for 448 endurance athletes.

449 Acknowledgements

450 We are thankful to the participants who volunteered for this study.

its
]

- 452 Funding for this research was provided by Alliance for Potato Research & Education. A. F.
- 453 Salvador is supported by Coordination for the Improvement of Higher Education Personnel

454 (CAPES).

455 Disclosures

456 No conflicts of interest, financial or otherwise, to declare by the authors.

457

458

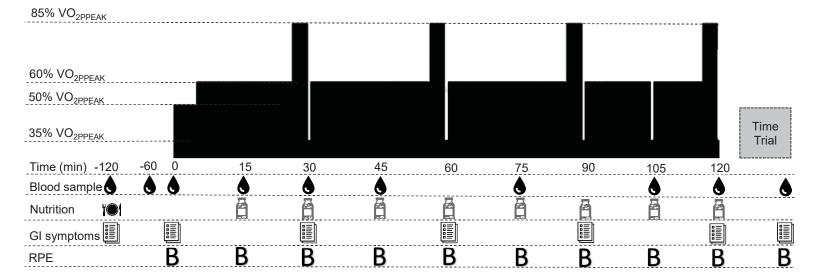
459 **REFERENCES**

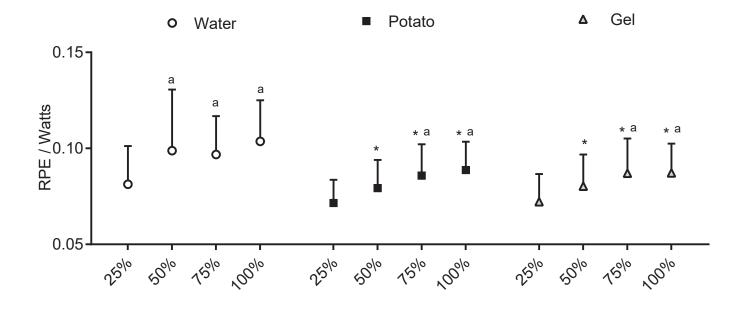
460

- Backhouse SH, Bishop NC, Biddle SJ, and Williams C. Effect of carbohydrate and
 prolonged exercise on affect and perceived exertion. *Medicine and science in sports and exercise*37: 1768-1773, 2005.
- 464 2. Bakdash JZ, and Marusich LR. Repeated Measures Correlation. *Front Psychol* 8: 456,
 465 2017.
- Beelen M, Kranenburg J, Senden JM, Kuipers H, and Loon LJ. Impact of caffeine
 and protein on postexercise muscle glycogen synthesis. *Medicine and science in sports and exercise* 44: 692-700, 2012.
- 469 4. Borg GA. Psychophysical bases of perceived exertion. *Medicine and science in sports*470 *and exercise* 14: 377-381, 1982.
- 471 5. Brisswalter J, and Louis J. Vitamin supplementation benefits in master athletes. *Sports* 472 *medicine* 44: 311-318, 2014.
- 473 6. Brouns F, and Beckers E. Is the gut an athletic organ? Digestion, absorption and
 474 exercise. *Sports medicine* 15: 242-257, 1993.
- 475 7. Burke LM, and Read RS. Dietary supplements in sport. *Sports medicine* 15: 43-65,
 476 1993.
- 477 8. Campbell JM, Bauer LL, Fahey GC, Hogarth A, Wolf BW, and Hunter DE.
- 478 Selected fructooligosaccharide (1-kestose, nystose, and 1F-β-fructofuranosylnystose)
- 479 composition of foods and feeds. Journal of agricultural and food chemistry 45: 3076-3082,
- 480 1997.

481 9. Carter JM, Jeukendrup AE, and Jones DA. The effect of carbohydrate mouth rinse on
482 1-h cycle time trial performance. *Medicine and science in sports and exercise* 36: 2107-2111,
483 2004.

- 484 10. **Close GL, Kasper AM, and Morton JP**. From Paper to Podium: Quantifying the
- Translational Potential of Performance Nutrition Research. *Sports medicine* 49: 25-37, 2019.
- 486 11. Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, and Holloszy JO.
- 487 Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. *Journal of applied*
- 488 *physiology: respiratory, environmental and exercise physiology* 55: 230-235, 1983.
- 489 12. de Oliveira EP, and Burini RC. Carbohydrate-dependent, exercise-induced
 490 gastrointestinal distress. *Nutrients* 6: 4191-4199, 2014.
- 490 gastomestinal distress. *Numerils* 0. 4191-4199, 2014. 491 13. **De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, and Meeusen R**.
- 492 Guidelines to classify subject groups in sport-science research. *Int J Sports Physiol Perform* 8:
 493 111-122, 2013.
- 494 14. Earnest CP, Lancaster SL, Rasmussen CJ, Kerksick CM, Lucia A, Greenwood MC,
- 495 Almada AL, Cowan PA, and Kreider RB. Low vs. high glycemic index carbohydrate gel
- 496 ingestion during simulated 64-km cycling time trial performance. Journal of strength and
- 497 *conditioning research* 18: 466-472, 2004.
- 498 15. Faude O, Hecksteden A, Hammes D, Schumacher F, Besenius E, Sperlich B, and
- 499 Meyer T. Reliability of time-to-exhaustion and selected psycho-physiological variables during
- 500 constant-load cycling at the maximal lactate steady-state. *Applied physiology, nutrition, and*
- 501 *metabolism = Physiologie appliquee, nutrition et metabolisme* 42: 142-147, 2017.
- 502 16. Fontes EB, Smirmaul BP, Nakamura FY, Pereira G, Okano AH, Altimari LR,
 503 Dantas JL, and de Moraes AC. The relationship between rating of perceived exertion and
 504 muscle activity during exhaustive constant-load cycling. *International journal of sports medicine*505 31: 683-688, 2010.
- 506 17. **Frayn KN**. Calculation of substrate oxidation rates in vivo from gaseous exchange.
- 507 *Journal of applied physiology: respiratory, environmental and exercise physiology* 55: 628-634, 508 1983.
- 509 18. Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ, Trenell
- 510 **MI, Cermak NM, and van Loon LJ**. Ingestion of glucose or sucrose prevents liver but not 511 muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.
- 511 Industre grycogen depiction during profonged chautanee-type excretise in trained eyensis. 512 American journal of physiology Endocrinology and metabolism 309: E1032-1039, 2015.
- 512 19. Havemann L, and Goedecke JH. Nutritional practices of male cyclists before and
- during an ultraendurance event. *International journal of sport nutrition and exercise metabolism* 18: 551-566, 2008.
- 516 20. Heffernan SM, Horner K, De Vito G, and Conway GE. The Role of Mineral and
- 517 Trace Element Supplementation in Exercise and Athletic Performance: A Systematic Review.
 518 *Nutrients* 11: 2019.
- 519 21. Hoebler C, Barry JL, David A, and Delort-Laval J. Rapid acid hydrolysis of plant cell 520 wall polysaccharides and simplified quantitative determination of their neutral monosaccharides
- by gas-liquid chromatography. *Journal of Agricultural and Food Chemistry* 37: 360-367, 1989.
 Hopkins WG. Measures of reliability in sports medicine and science. *Sports medicine*
- 522 22. Hopkins WG. Measures of reliability in sports medicine and science. *Sports medicine* 523 30: 1-15, 2000.
- 524 23. Jentjens RL, Moseley L, Waring RH, Harding LK, and Jeukendrup AE. Oxidation
- 525 of combined ingestion of glucose and fructose during exercise. *Journal of applied physiology* 96: 526 1277-1284, 2004.


527 24. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during 528 exercise. Sports medicine 44 Suppl 1: S25-33, 2014. 529 Jeukendrup AE. Training the Gut for Athletes. Sports medicine 47: 101-110, 2017. 25. 530 26. Jonvik KL, Lenaerts K, Smeets JSJ, Kolkman JJ, LJC VANL, and Verdijk LB. 531 Sucrose but Not Nitrate Ingestion Reduces Strenuous Cycling-induced Intestinal Injury. 532 Medicine and science in sports and exercise 51: 436-444, 2019. 533 Karhu E, Forsgard RA, Alanko L, Alfthan H, Pussinen P, Hamalainen E, and 27. 534 Korpela R. Exercise and gastrointestinal symptoms: running-induced changes in intestinal 535 permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. 536 European journal of applied physiology 117: 2519-2526, 2017. 537 Maga JAJFRI. Potato flavor. 10: 1-48, 1994. 28. 538 Mazzulla M, Parel JT, Beals JW, S VANV, Abou Sawan S, West DWD, Paluska SA, 29. 539 Ulanov AV, Moore DR, and Burd NA. Endurance Exercise Attenuates Postprandial Whole-540 Body Leucine Balance in Trained Men. Medicine and science in sports and exercise 49: 2585-541 2592, 2017. 542 McKenna Z, Berkemeier Q, Naylor A, Kleint A, Gorini F, Ng J, Kim JK, Sullivan S, 30. 543 and Gillum T. Bovine colostrum supplementation does not affect plasma I-FABP concentrations 544 following exercise in a hot and humid environment. European journal of applied physiology 117: 2561-2567, 2017. 545 546 31. Murray R, Paul GL, Seifert JG, Eddy DE, and Halaby GA. The effects of glucose, 547 fructose, and sucrose ingestion during exercise. Medicine and science in sports and exercise 21: 548 275-282, 1989. 549 Neufer PD, Costill DL, Fink WJ, Kirwan JP, Fielding RA, and Flynn MG. Effects of 32. 550 exercise and carbohydrate composition on gastric emptying. Medicine and science in sports and 551 exercise 18: 658-662, 1986. 552 33. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. 553 Medicine and science in sports and exercise 35: 589-594, 2003. 554 Peters HP, Bos M, Seebregts L, Akkermans LM, van Berge Henegouwen GP, Bol E, 34. 555 Mosterd WL, and de Vries WR. Gastrointestinal symptoms in long-distance runners, cyclists, and triathletes: prevalence, medication, and etiology. The American journal of gastroenterology 556 557 94: 1570-1581, 1999. 558 Pfeiffer B, Stellingwerff T, Zaltas E, and Jeukendrup AE. CHO oxidation from a 35. 559 CHO gel compared with a drink during exercise. Medicine and science in sports and exercise 42: 560 2038-2045, 2010. 561 Prosky L, Asp NG, Furda I, DeVries JW, Schweizer TF, and Harland BF. 36. 562 Determination of total dietary fiber in foods and food products: collaborative study. Journal -563 Association of Official Analytical Chemists 68: 677-679, 1985. 564 Smiricky MR, Grieshop CM, Albin DM, Wubben JE, Gabert VM, and Fahey GC, 37. 565 Jr. The influence of soy oligosaccharides on apparent and true ileal amino acid digestibilities and fecal consistency in growing pigs. Journal of animal science 80: 2433-2441, 2002. 566 Smith D. Removing and analyzing total nonstructural carbohydrates from plant tissue. 567 38. Research Reports Wisconsin Coll Agric Life Sci 41: 1969. 568 569 Snipe RMJ, Khoo A, Kitic CM, Gibson PR, and Costa RJS. Carbohydrate and protein 39. 570 intake during exertional heat stress ameliorates intestinal epithelial injury and small intestine 571 permeability. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition 572 et metabolisme 42: 1283-1292, 2017.


- Stevens CJ, Dascombe B, Boyko A, Sculley D, and Callister R. Ice slurry ingestion 573 40. 574 during cycling improves Olympic distance triathlon performance in the heat. Journal of sports 575 sciences 31: 1271-1279, 2013. 576 41. Thomas DE, Brotherhood JR, and Brand JC. Carbohydrate feeding before exercise: 577 effect of glycemic index. International journal of sports medicine 12: 180-186, 1991. 578 Thomas K, Stone MR, Thompson KG, St Clair Gibson A, and Ansley L. 42. 579 Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained 580 cyclists. European journal of applied physiology 112: 223-229, 2012. 581 Turner CE, Byblow WD, Stinear CM, and Gant N. Carbohydrate in the mouth 43. 582 enhances activation of brain circuitry involved in motor performance and sensory perception. 583 Appetite 80: 212-219, 2014. 584 USDA. USDA Food Composition Databases Washington DC: United States Department 44. 585 of Agriculture Agricultural Research Service, 2019. 586 van Wijck K, Wijnands KA, Meesters DM, Boonen B, van Loon LJ, Buurman WA, 45. 587 Dejong CH, Lenaerts K, and Poeze M. L-citrulline improves splanchnic perfusion and reduces 588 gut injury during exercise. Medicine and science in sports and exercise 46: 2039-2046, 2014.
- 589
- 590
- 591
- 592 Figure Legends
- 593 Figure 1. Overview of experimental design. A post-absorptive blood sample was obtained before
- the ingestion of a standardized breakfast (-120 min). The cycling challenge (0-120 min, 60%
- 595 VO_{2PPEAK}) initiated with a 5 min warm-up (50% VO_{2PPEAK}), with hills (85% VO_{2PPEAK}/3 min)
- 596 followed by downhills (35% VO_{2PPEAK}/1 min) every 30 min. A downhill at 105 min allowed for
- 597 mask placement to collect gas exchange. A 6 kJ/kg time trial was initiated after cycling challenge
- 598 completion. VO_{2PPEAK}, VO_{2PEAK} workload; GI, gastrointestinal; RPE, rate of perceived exertion
- 599 (Borg scale, 6-20).
- 600 Figure 2. Ratings of perceived exertion (RPE) during the time trial relative to load. Water
- 601 (circle), potato (square), and gel (triangle) conditions. All values are presented in mean \pm SD
- 602 (n=12). * Significant difference from water condition (p<0.01). *Significant difference from 25%
- 603 within condition (P < 0.01).

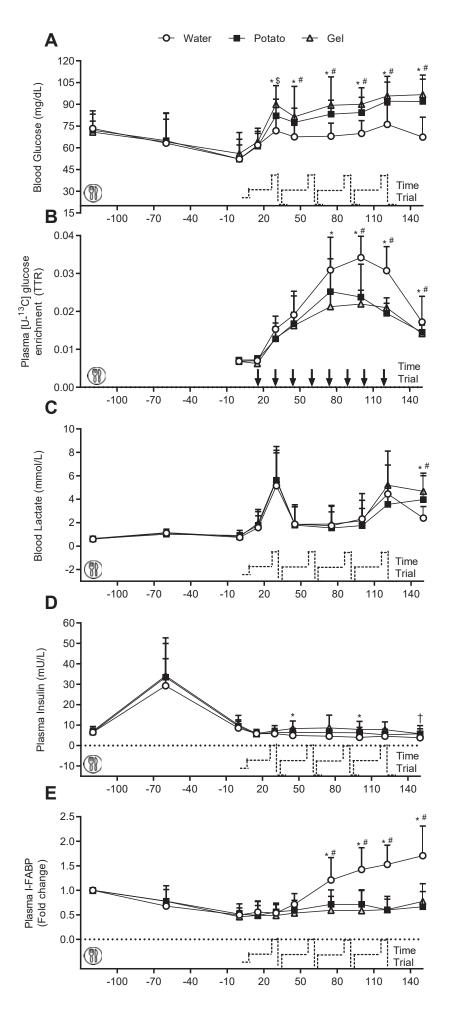
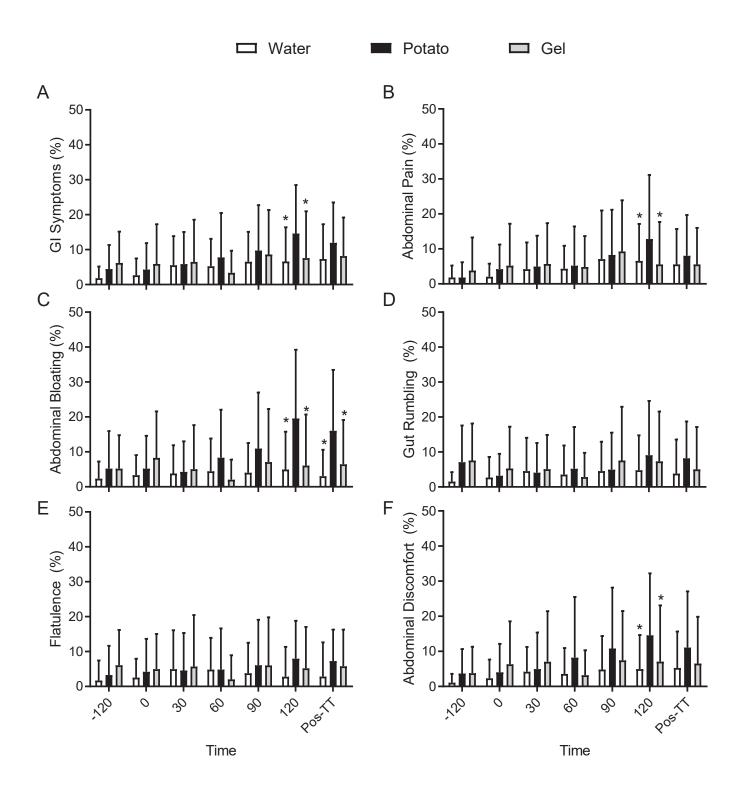

Figure 3. (A) Blood glucose, (B) blood lactate, (C) plasma [U-¹³C] glucose enrichment, (D) 604 plasma insulin concentrations, and (E) Fold change from baseline of plasma intestinal fatty acid 605 606 binding protein (I-FABP) concentrations during the experimental trial. All values are presented 607 in mean \pm SD (n=12). Water (circle), potato (square), and gel (triangle) conditions. A standardized breakfast was consumed at -120 min. TTR, tracer ([U-¹³C] glucose) to tracee 608 609 (glucose) ratio. *Significant difference between water and gel (P<0.05). [#]Significant difference between water and potato (P<0.05). †Tendency for difference between water and gel (P<0.10). ^{\$} 610 611 Tendency for difference between water and potato (P<0.10).

Figure 4. Gastrointestinal (GI) symptoms (mm) during the experimental trial. All values are presented in mean \pm SD (*n*=12). Water (white), potato (black), and gel (gray) conditions. Significant difference from potatoes (P<0.05).


- 615 Figure 5. Time trial performance (A) as total time (min) for completion and (B) power output
- 616 during each quartile of completeness. Mean \pm SD (bars) and individual responses (lines) (n=12).
- ⁶¹⁷ * Significantly different from water (P=0.03). [#]Significantly different from water (P<0.02).



Downloaded from www.physiology.org/journal/jappl at New York Univ (216.165.095.161) on October 22, 2019.

Nutrient	Potato	Gel
Carbohydrate dose (g)	15.2	15.5
Total serving size (g)	1,028	184
Moisture content (%)	86	32
Energy (kcal)	548	494
Crude protein (g)	13.9	0.1
Total Carbohydrate (g)	121.3	123.7
Total dietary fiber	11.2	2.3
Soluble fiber	6.6	2.3
Insoluble fiber	4.6	0.0
Hydrolyzed monosaccharides	129.8	129.4
Total glucose	120.5	90.4
Total galactose	3.9	0.0
Total fructose	4.3	39.0

Table 1. Nutrient composition of treatment conditions.

Carbohydrate dose administered every 15 min for 2 h. Total serving size expressed on an as-is basis. Sample aliquots were dried to completion at 105°C to determine dry matter content (i.e., non-water portion of the original sample). All nutrients were analyzed and their composition values were calculated and expressed on a dry matter basis (DMB) to ensure an equal comparison between potato and gel samples. Energy estimated from USDA Database, based on the Atwater system (44). Total carbohydrate calculated by difference (organic matter - crude protein in DMB).